Explorable.com 156.1K reads

Share this page on your website:

Don't miss these related articles:

- 1Statistical Hypothesis Testing
- 2Relationships
- 3Correlation
- 4Regression
- 5Student’s T-Test
- 6ANOVA
- 7Nonparametric Statistics
- 8Other Ways to Analyse Data

n = sample size

For example suppose a person wants to test if both tea & coffee are equally popular in a particular town. Then he can take a sample of size say 500 from the town out of which suppose 280 are tea drinkers. To test the hypothesis, he can use Z-test.

There are different types of Z-test each for different purpose. Some of the popular types are outlined below:

*z test for single proportion*is used to test a hypothesis on a specific value of the population proportion.Statistically speaking, we test the null hypothesis H

_{0}: p = p_{0}against the alternative hypothesis H_{1}: p >< p_{0}where p is the population proportion and p_{0}is a specific value of the population proportion we would like to test for acceptance.The example on tea drinkers explained above requires this test. In that example, p

_{0}= 0.5. Notice that in this particular example, proportion refers to the proportion of tea drinkers.*z test for difference of proportions*is used to test the hypothesis that two populations have the same proportion.For example suppose one is interested to test if there is any significant difference in the habit of tea drinking between male and female citizens of a town. In such a situation, Z-test for difference of proportions can be applied.

One would have to obtain two independent samples from the town- one from males and the other from females and determine the proportion of tea drinkers in each sample in order to perform this test.

*z -test for single mean*is used to test a hypothesis on a specific value of the population mean.Statistically speaking, we test the null hypothesis H

_{0}: μ = μ_{0}against the alternative hypothesis H_{1}: μ >< μ_{0}where μ is the population mean and μ_{0}is a specific value of the population that we would like to test for acceptance.Unlike the t-test for single mean, this test is used if n ≥ 30 and population standard deviation is known.

*z test for single variance*is used to test a hypothesis on a specific value of the population variance.Statistically speaking, we test the null hypothesis H

_{0}: σ = σ_{0}against H_{1}: σ >< σ_{0}where σ is the population mean and σ_{0}is a specific value of the population variance that we would like to test for acceptance.In other words, this test enables us to test if the given sample has been drawn from a population with specific variance σ

_{0}. Unlike the chi square test for single variance, this test is used if n ≥ 30.*Z-test for testing equality of variance*is used to test the hypothesis of equality of two population variances when the sample size of each sample is 30 or larger.

Irrespective of the type of Z-test used it is assumed that the populations from which the samples are drawn are normal.

Full reference:

Explorable.com (Aug 13, 2009). Z-Test. Retrieved Mar 17, 2018 from Explorable.com: https://explorable.com/z-test

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0).

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give ** appropriate credit** and

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Search over 500 articles on psychology, science, and experiments.

Don't miss these related articles:

- 1Statistical Hypothesis Testing
- 2Relationships
- 3Correlation
- 4Regression
- 5Student’s T-Test
- 6ANOVA
- 7Nonparametric Statistics
- 8Other Ways to Analyse Data

Subscribe / Share

- Subscribe to our RSS Feed
- Like us on Facebook
- Follow us on Twitter
- Founder:
- Oskar Blakstad Blog
- Oskar Blakstad on Twitter

Explorable.com - 2008-2018

You are free to copy, share and adapt any text in the article, as long as you give *appropriate credit* and *provide a link/reference* to this page.