Measurement Of Uncertainty: Standard Deviation
Many experiments require measurement of uncertainty. Standard deviation is the best way to accomplish this. Standard deviation tells us about how the data is distributed about the mean value.
This article is a part of the guide:
Discover 17 more articles on this topicBrowse Full Outline
Examples
For example, the data points 50, 51, 52, 55, 56, 57, 59 and 60 have a mean at 55 (Blue).
Another data set of 12, 32, 43, 48, 64, 71, 83 and 87. This set too has a mean of 55 (Pink).
However, it can clearly be seen that the properties of these two sets are different. The first set is much more closely packed than the second one. Through standard deviation, we can measure this distribution of data about the mean.
The above example should make it clear that if the data points are values of the same parameter in various experiments, then the first data set is a good fit, but the second one is too uncertain. Therefore in measurement of uncertainty, standard deviation is important  the lesser the standard deviation, the lesser this uncertainty and thus more the confidence in the experiment, and thus higher the reliability of the experiment.
One Standard Deviation
In a normal distribution, values falling within 68.2% of the mean fall within one standard deviation. This means if the mean energy consumption of various houses in a colony is 200 units with a standard deviation of 20 units, it means that 68.2% of the households consume energy between 180 to 220 units. This is assuming that the data of energy consumption is normally distributed.
If a researcher considers three standard deviations to either side of the mean, this covers 99% of the data. Thus in the previous example, 99% of the households have their energy consumption between 140 to 260 units. In most cases, this is considered as the whole data set, especially when the data can extend to infinity.
Usage
The measurement of uncertainty through standard deviation is used in many experiments of social sciences and finances. For example, the more risky and volatile ventures have a higher standard deviation. Also, a very high standard deviation of the results for the same survey, for example, should make one rethink about the sample size and the survey as a whole.
In physical experiments, it is important to have a measurement of uncertainty. Standard deviation provides a way to check the results. Very large values of standard deviation can mean the experiment is faulty  either there is too much noise from outside or there could be a fault in the measuring instrument.
.Check out our quizpage with tests about:
Siddharth Kalla (Aug 2, 2009). Measurement Of Uncertainty: Standard Deviation. Retrieved Dec 16, 2018 from Explorable.com: https://explorable.com/measurementofuncertaintystandarddeviation
You Are Allowed To Copy The Text
The text in this article is licensed under the Creative CommonsLicense Attribution 4.0 International (CC BY 4.0).
This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.
That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, coursematerial, papers, wikipedia and presentations (with clear attribution).
Related articles
.Want to stay up to date? Follow us!
.Footer bottom
Search
More Info
This article is a part of the guide:
Discover 17 more articles on this topicBrowse Full Outline
 Subscribe to our RSS Feed
 Like us on Facebook
 Follow us on Twitter
 Founder:
 Oskar Blakstad Blog

Oskar Blakstad on Twitter