Share this page on your website:

Don't miss these related articles:

In many cases of statistics and experimentation, it is the variance that gives invaluable information about the data distribution.

The mathematical formula to calculate the variance is given by:

σ

^{2}= variance∑ (X - µ)

^{2}= The sum of (X - µ)^{2 }for all datapoints

In many cases of statistics and experimentation, it is the variance that gives invaluable information about the data distribution.

The mathematical formula to calculate the variance is given by:

σ

^{2}= variance∑ (X - µ)

^{2}= The sum of (X - µ)^{2 }for all datapointsX = individual data points

µ = mean of the population

N = number of data points

This means the square of the variance is given by the average of the squares of difference between the data points and the mean.

For example, suppose you want to find the variance of scores on a test. **Suppose the scores are 67, 72, 85, 93 and 98.**

1.** Write down the formula for variance:**

σ^{2} = ∑ (x-µ)^{2} / N

2. There are five scores in total, so N = 5.

σ^{2} = ∑ (x-µ)^{2} /** 5**

3. The mean (µ) for the five scores (67, 72, 85, 93, 98), so **µ = 83.**

σ^{2} = ∑ (x-**83**)^{2} / 5

4. Now, **compare each score** (x = 67, 72, 85, 93, 98) **to the mean** (µ = 83)

σ^{2} = [ (**67**-83)^{2}+(**72**-83)^{2}+(**85**-83)^{2}+(**93**-83)^{2}+(**98**-83)^{2} ] / 5

5.** Conduct the subtraction in each paranthesis.**

67-83 = -16

72-83 = -11

85-83 = 2

93-83 = 10

98 - 83 = 15

The formula will look like this:

σ^{2} = [ (**-16**)^{2}+(**-11**)^{2}+(**2**)^{2}+(**10**)^{2}+(**15**)_{2}] / 5

6. Then, **square each paranthesis**. We get 256, 121, 4, 100 and 225.

This is how:

σ^{2} = [ (-16)x(-16)+(-11)x(-11)+(2)x(2)+(10)x(10)+(15)x(15)] / 5

σ^{2} = [ 16x16 + 11x11 + 2x2 + 10x10 + 15x15] / 5

which equals:

σ^{2} = [**256 + 121 + 4 + 100 + 225**] / 5

7.** Then summarize the numbers inside the brackets:**

σ^{2} = **706** / 5

8. To get the final answer, we **divide the sum by 5** (Because it was five scores). This is the variance for the dataset:

σ^{2} = **141.2**

This is the variance of the population of scores.

In many cases, instead of a population, we deal with samples.

In this case, we need to slightly change the formula for standard deviation as

S

^{2}= the standard deviation of the sample.

Note that the denominator is one less than the sample size in this case.

The concept of variance can be extended to continuous data sets too. In that case, instead of summing up the individual differences from the mean, we need to integrate them. This approach is also useful when the number of data points is very large, like the population of a country.

Variance is extensively used in probability theory, wherein from a given smaller sample set, more generalized conclusions need to be drawn. This is because variance gives us an idea about the distribution of data around the mean, and thus from this distribution, we can work out where we can expect an unknown data point.

Related pages:

Search over 500 articles on psychology, science, and experiments.

How to cite this article:

Siddharth Kalla (Mar 15, 2009). Statistical Variance. Retrieved Oct 08, 2015 from Explorable.com: https://explorable.com/statistical-variance

Don't miss these related articles:

Subscribe / Share

- Subscribe to our RSS Feed
- Like us on Facebook
- Follow us on Twitter
- Founder:
- Oskar Blakstad Blog
- Oskar Blakstad on Twitter

Explorable.com - Copyright © 2008-2015. All Rights Reserved.