Spanish

Método de muestreo estratificado

Explorable.com297.4K visitas

El muestreo estratificado es una técnica de muestreo probabilístico en donde el investigador divide a toda la población en diferentes subgrupos o estratos. Luego, selecciona aleatoriamente a los sujetos finales de los diferentes estratos en forma proporcional.

Stratified Sampling Method
Stratified Sampling Method

Es importante tener en cuenta que los estratos no deben superponerse. Que los subgrupos se superpongan dará a algunos individuos mayores probabilidades de ser seleccionados como sujetos. Esto niega completamente el concepto de muestreo estratificado como un tipo de muestreo probabilístico.

Igualmente importante es el hecho de que el investigador debe utilizar un muestreo probabilístico simple dentro de los diferentes estratos.

Los estratos más comunes utilizados en el muestreo aleatorio estratificado son la edad, el género, el nivel socioeconómico, la religión, la nacionalidad y el nivel de estudios alcanzado.

Quiz 1 Quiz 2 Quiz 3 All Quizzes

Muestreo aleatorio estratificado: usos

  • Se utiliza el muestreo aleatorio estratificado cuando el investigador desea resaltar un subgrupo específico dentro de la población. Esta técnica es útil en tales investigaciones porque garantiza la presencia del subgrupo clave dentro de la muestra.
  • Los investigadores también emplean un muestreo aleatorio estratificado cuando quieren observar relaciones entre dos o más subgrupos. Con la técnica de muestreo aleatorio simple, el investigador no está seguro de si los subgrupos que quiere observar son representados equitativa y proporcionalmente dentro de la muestra.
  • Con el muestreo estratificado, el investigador puede probar de forma representativa hasta a los subgrupos más pequeños y más inaccesibles de la población. Esto permite que los investigadores prueben a los extremos de la población.
  • Con esta técnica, tienes una precisión estadística más elevada en comparación con el muestreo aleatorio simple. Esto se debe a que la variabilidad dentro de los subgrupos es menor en comparación con las variaciones cuando se trata de toda la población.

    Debido a que esta técnica tiene una alta precisión estadística, exige un tamaño de la muestra menor que puede ahorrar mucho tiempo, dinero y esfuerzo de los investigadores.





Muestreo estratificado: tipos

Muestreo aleatorio estratificado proporcionado

En esta técnica, el tamaño de la muestra de cada estrato es proporcional al tamaño de la población del estrato si se compara con la población total. Esto significa que el cada estrato tiene la misma fracción de muestreo.

Supongamos que tienes 3 estratos con 100, 200 y 300 tamaños de la población, respectivamente. El investigador eligió una fracción de muestreo de ½. Luego, el investigador debe probar al azar 50, 100 y 150 sujetos de cada estrato, respectivamente.

Estrato A B C
Tamaño de la población 100 200 300
Fracción de muestreo ½ ½ ½
Tamaño final de la muestra 50 100 150

En esta técnica, lo importante es recordar el uso de la misma fracción de muestreo en cada estrato, independientemente de las diferencias en el tamaño de la población de los estratos. Es muy parecido a reunir una población más pequeña que sea específica de las proporciones relativas de los subgrupos dentro de la población.

Muestreo aleatorio estratificado desproporcionado

La única diferencia entre el muestreo aleatorio estratificado proporcionado y el desproporcionado son sus fracciones de muestreo. En el muestreo desproporcionado, los diferentes estratos tienen diferentes fracciones de muestreo.

La precisión de este diseño es altamente dependiente de la asignación de fracción de muestreo del investigador. Si el investigador comete errores en la asignación de fracciones de muestreo, un estrato puede ser representado en exceso o insuficientemente y dará resultados sesgados.

Full reference: 

Explorable.com (Jun 2, 2009). Método de muestreo estratificado. Feb 10, 2025 Obtenido de Explorable.com: https://explorable.com/es/muestreo-estratificado

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0).

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).





Want to stay up to date? Follow us!