Calculate Standard Deviation

Your current progress:
0%
#sum = [num1] + [num2] + [num3] + [num4] + [num5]
#n = 5
#average = #sum / #n
#x1 = [num1] - #average
#x2 = [num2] - #average
#x3 = [num3] - #average
#x4 = [num4] - #average
#x5 = [num5] - #average
#xx1 = #x1 * #x1
#xx2 = #x2 * #x2
#xx3 = #x3 * #x3
#xx4 = #x4 * #x4
#xx5 = #x5 * #x5
#sum = #xx1 + #xx2 + #xx3 + #xx4 + #xx5
#sumroot = #sum / #n
#root = sqrt([#sumroot])
#power = pow(2,3)

σ = √ ( ∑ ( x - mean )2 / N )

In this example, there are [#n] numbers in the array.

So,

N = [#n]

Which means:

σ = √ ( ∑ ( x - mean )2 / [#n] )

Mean = ( [num1] + [num2] + [num3] + [num4] + [num5] ) / [#n] = [#average]

σ = √ ( ∑ ( x - [#average] )2 / [#n] )

Here, we calculate how much each value is from the mean value

x1 = [num1] -  [#average] = [#x1]
x2 = [num2] - [#average] = [#x2]
x3 = [num3] - [#average] = [#x3]
x4 = [num4] - [#average] = [#x4]
x5 = [num5] - [#average] = [#x5]

Which means:

σ = √ ( ∑ ( x - [#average] )2 / [#n] ) = √ ( ∑ ( x12 + x22 + x32 + x42 + x52 ) / [#n] )

σ = √ ( ( [#x1]2 + [#x2]2 + [#x3]2 + [#x4]2 + [#x5]2 ) / [#n] )

σ = √ ( ( [#xx1] + [#xx2] + [#xx3] + [#xx4] + [#xx5] ) / [#n] )

σ = [#sumroot]

σ = [#root]

So that is the answer. The standard deviation of [num1], [num2], [num3], [num4] and [num5] is [#root].