Louis Pasteur launched his remarkable scientific career as a chemist studying organic synthesis. His pasteurization process concluded that all fermentable solutions for hereditary and contagious problems, and also inspired him to discover germs to prevent diseases like cholera, anthrax, and swine erysipelas. Pasteur followed his discovery of germ theory with the utilization of vaccines. His study of silkworm diseases laid the foundation for prophylaxis rules and provided a solution for hereditary and contagious diseases. Pasteur's discovery of molecular asymmetry occurred during experimentation with paratartrate crystals. Through his comprehensive research on crystallography, chemistry, and optics, Pasteur demonstrated that a crystal's shape, its molecular structure, and its effect on polarized light are all interrelated. Stereochemistry, or spatial chemistry, which initiated the immunology branch of science, was considered a dreadful disease for its symptoms and treatment. At first, even Pasteur failed to find and isolate the germ, but with his excellent experimental method, he built an argument against the spontaneous generation theory. In his paper in 1862, he explained that airborne dust carried the germs of yeasts and microorganisms present during the fermentation process. Pasteur demonstrated that active substance becomes inactive due to polarized light. He discovered that under polarized light, inactive substance became active due to the cosmic forces that preside over their formation are themselves asymmetrical.

Pasteur was appointed as physics professor at the Dijon high school in 1848. His systematic methods of research, scientific approach, and insight revolutionized the industrial sectors successfully. His pasteurization process concluded that all fermentable solutions for hereditary and contagious problems transformed Pasteur into a legend.